
2022 John O’Bryan Team Competition Key 
 
1. For all natural numbers n, let S(n) be the sum of the digits of n plus the number of digits 

of n.  For instance, S(125) = 1 + 2 + 5 + 3 = 11.  Note that the first digit of n, when 
reading from left to right, cannot be zero. 

 
 a. Determine S(12408) 
 
 b. Determine all numbers m such that S(m) = 4 
 
 c. Determine whether or not there exists a natural number m such that  
  S(m) – S(m + 1) > 50.  Provide a clear justification for your answer.  
 
Problem 1 Solution:  
 
a. S(12408) = 1 + 2 + 4 + 0 + 8 + 5 = 20. 
 
b. Consider 1-digit numbers, then m = 3. Among 2-digit numbers we need those with the 

sum of their digits equal to 2; so we have m = 11 and m = 20. Among 3-digit numbers we 
need those with the sum of their digits equal to 1, so we have m = 100.  For numbers with 
4 or greater than 4 digits, S(m) > 4, so only one-, two, and three-digit numbers are 
possible.  The answer is 3, 11, 20, 100. 

 
c. If m and m + 1 differ only in one last digit the inequality S(m) − S(m + 1) > 50 is not 

possible.  However, it is possible to satisfy the inequality.  Consider the case when m is a 
k-digit number composed of k 9’s.  Then S(m) = 9k + k = 10k and S(m + 1) = 1 + (k + 1) = 
k + 2.  If k ≥ 6, therefore, we have S(m) − S(m + 1) = 9k − 2 > 50.  For k = 6, for instance, 
we obtain m = 999, 999 and S(999, 999) − S(1,000,000) = 60 − 8 > 50.  The answer is 
YES, for example, if m = 999, 999. 

 
  



2. Suppose line J in the xy-plane is given by the equation 5y + (2c – 4)x – 10c = 0, where c 
is some real number.  Furthermore, suppose line J intersects the rectangle with vertices 
O(0,0), A(0,6), B(10,6), and C(10,0) at point M on line segment OA and point N on line 
segment BC. 

 
 a. Show that 1 ≤ c ≤ 3 
 

b. Show that the area of quadrilateral AMNB is one-third the area of rectangle OABC 
 
c. Find the equation, in terms of c of the line parallel to J that has the following 

characteristics: (1) the line intersects segment OA at point R, (2) the line intersects 
segment BC at point Q, and (3) quadrilaterals AMNB, MNQR, and RQCO all have 
the same area.   

 
Problem 2 Solution: 

 
a. Since M is on OA, the x-

coordinate of M is 0. The y-
coordinate M is then the 
solution to the equation 5y – 
10c = 0.  So,  y = 2c and, 
therefore, line J intersects 
OA at point M(0, 2c).  For M 
to be on segment OA, 0 ≤ 2c 
≤ 6, which implies that 0 ≤ c 
≤ 3.  Similarly, the x-
coordinate of N is 10, so the 
y-coordinate is the solution 
to 5y + (2c − 4)(10) – 10c = 0, which has solution is y = 8 – 2c. Hence, 0 ≤ 8 – 2c ≤ 6 or 1 
≤ c ≤ 4.  Thus 0 ≤ c ≤ 3 and 1 ≤ c ≤ 4 must both be true, 1 ≤ c ≤ 3. 

 
b. Observe AMNB is a trapezoid with base AB and parallel sides are AM and BN, so has 

area 
AB(AM+BN)

2
 =  

10((6 − 2𝑐) + (6 − (8 − 2𝑐)))

2
 = 

10(4)

2
 = 20.  The area of rectangle 

OABC = 10(6) = 60, so the area of trapezoid AMNB = (1/3)(area of rectangle OABC). 
 
c. In order for the quadrilaterals to have equal area, it is sufficient to demand that the area 

of trapezoid RQCO has area 20 (i.e. 1/3 the area of OABC). 
 Let point X(5, b) be the midpoint of segment PQ.  Then the average of the y-coordinates 

of R and Q is b, so the area of RQCO is b(10) = 10b, so b = 2. Hence the point X(5, 2) is 

on the desired line.  The slope of this line is the same as line J, so it is given by 
4 − 2c

5
.   

Thus, the equation of the line is y = (
𝟒 − 𝟐𝐜

𝟓
 ) 𝐱 + (𝟐𝐜 − 𝟐).  

 
  



3. Suppose g(x) is the quadratic function g(x) = x2 – ax + b, where a and b are natural 
numbers. 

 
 a. If a = b = 2, find the set of real roots of the expression g(x) – x. 
 
 b. If a = b = 2, find the set of real roots of the expression g(g(x)) – x. 
 
 c. Find the number of pairs of natural numbers (a, b) where 1 ≤ a ≤ 2022,  

1 ≤ b ≤ 2022, and every root of the expression g(g(x)) – x is an integer. 
 
Problem 3 Solution 
 
a. If a = 2 and b = 2, then g(x) = x2 − 2x + 2. Hence, g(x)−x = = x2 − 3x + 2 = (x−2)(x−1).  

Therefore, the roots of g(x) − x are 1 and 2. 
 

b. We now determine g(g(x)) − x.  Note that g(g(x)) = (x2 − 2x + 2)2 − 2(x2 − 2x + 2) + 2 = x4 
− 4x3 + 6x2 − 4x + 2. Therefore, g(g(x)) − x = x4 − 4x3 + 6x2 − 5x + 2.  Note that 1 is a root 
of g(g(x)) − x. Then, x4 − 4x3 + 6x2 − 5x + 2 = (x − 1)(x3 − 3x2 + 3x − 2) = (x − 1)(x − 2)(x2 
− x + 1).  Note that x2−x+1 has no real roots since its discriminant is 12−4·1·1 = −3 < 0. 
Therefore, the only real roots of g(g(x)) − x are 1 and 2. 
 

c. The answer is 43.   First, we claim that if r is a root of g(x) − x, then r is a root of g(g(x)) − 
x.  Since r is a root of g(x) − x, g(r) − r = 0, or g(r) = r. Therefore, g(g(r)) − r = g(r) − r = 0.  
Hence, any root of g(x) − x is a root of g(g(x)) – x and g(x) − x is a factor of g(g(x)) − x.  

 
Note that g(g(x)) − x = g(x2 − ax + b) − x = (x2 − ax + b)2 − a(x2 − ax + b) + b − x = x4 − 
2ax3 + (a2 + 2b − a)x2 − (2ab − a2 + 1)x + (b2 − ab + b). Since g(x) − x = x2 − (a + 1)x + b, 
g(g(x)) − x can be factored into (x2 − (a + 1)x + b)(x2 − (a − 1)x + (b − a + 1)).   Since both 
factors are monic (univariate polynomials), every root of g(g(x)) − x is an integer if and 
only if the discriminants of both of these quadratic factors are perfect squares. These two 
discriminants are (a + 1)2 − 4b = a2 + 2a + 1 − 4b and (a − 1)2 − 4(b − a + 1) = a2 + 2a + 1 
− 4b − 4.   Note that the first discriminant is four more than the second discriminant.  
 
The only two perfect squares that differ by 4 are 4 and 0. This statement is true since if r, 
s are non-negative integers such that r2 −s2 = 4, then (r−s)(r+s) = 4.  Since r, s are non-
negative, (r−s, r+s) = (2, 2) or (1, 4). In the latter case, r − s = 1 and r + s = 4.  Therefore, 
r = 5/2 and s = 3/2, which are not integers.  Therefore, (r − s, r + s) = (2, 2), i.e. r = 2, s = 
0. Hence, the larger perfect square is 22 = 4 and the smaller perfect square is 0.  
Therefore, a2 + 2a + 1 − 4b = 4.  Rearranging this and factoring yields (a + 1)2 = 4(b + 1).  
Since (a+1)2 and 4 are perfect squares, b+1 is a perfect square. Therefore, there exists a 
positive integer m such that b + 1 = m2.   Then b = m2 − 1.  Consequently, (a + 1)2 = 4m2.  
Since a is a natural number, a + 1 = 2m.  Hence, a = 2m − 1.  Therefore, (a, b) = (2m − 1, 
m2 − 1).   
 
We now verify that all such (a, b) have the property that the roots of x2 − (a + 1)x + b and 
x2−(a−1)x+ (b−a+ 1) are all integers, implying that every root of g(g(x))−x is an integer.  
Substituting (a, b) = (2m − 1, m2 − 1) into these two polynomials yield x2 − 2mx + m2 − 1 
= (x−(m−1))(x−(m+1)) and x2−(2m−2)x+(m2−2m+1) = (x−(m−1))(x−(m−1)).   Since m is a 
positive integer, all four roots of g(g(x))−x are integers.  
 



Since 1 ≤ a, b ≤ 2022, it remains to find the number of positive integers m such that 1 ≤ 

2m − 1, m2 − 1 ≤ 2022. Since 1 ≤ m2 − 1 ≤ 2022, 2 ≤ m2 ≤ 2023.  Hence, 2 ≤ m ≤ ⌊√2023⌋ 
= 44, where ⌊t⌋ denotes the largest integer less than or equal to t.  There are 43 solutions 
for m, namely m = 2, 3, . . . 44. These values of m clearly satisfy 1 ≤ 2m − 1 ≤ 2022.  
Therefore, the number of ordered positive integer pairs (a, b) that results in g(g(x))−x 
having all integer roots is 43. 

 
 
 
 
 
 
 
 

  



4. Jaden takes a mathematics test consisting of 100 questions, where the answer to each 
question is either TRUE or FALSE.  For every five consecutive questions on the test, the 
answers to exactly three of the questions are TRUE.  If the answers to Question 1 and 
Question 100 are both FALSE: 

 
a. Find the number of questions on the test for which the correct answer is TRUE. 

 
 b. Find the correct answer to the sixth question on the test. 
 
 c. Explain how Jaden can correctly answer ALL 100 questions on the test. 
 
Problem 4 Solution: 
 
a.  The answer is 60.  Split the 100 problems into groups of 5, namely 1−5, 6−10, 11−15, . . 

. , 91−95, 96−100.  Since there are 100 problems and five problems per group and every 
set of five consecutive problems contain exactly three problems whose answer is TRUE, 
each group contains three problems whose answers are TRUE.  Since there are 20 
groups, there are 20×3 = 60 problems whose answers are TRUE on the test.  

 
b.  Consider the problems 1, 2, 3, 4, 5, 6.  Among problems 1−5, there are exactly three 

problems whose answer is TRUE.  Since the answer to the first problem is FALSE, 
among problems 2 − 5, exactly three of these problems have answer TRUE.  Now 
consider problem 6.  Since problems 2 − 6 contains exactly three problems whose 
answers are TRUE and problems 2−5 already contain 3 such problems, the answer 
to problem 6 is FALSE.  

 
c. The answer to the question depends upon the fact that the answer to problem n has the 

same answer as problem n + 5.  Consider the problems n, n + 1, n + 2, n + 3, n + 4, n + 
5.  Note that problems n, n+1, n+2, n+3, n+4 contain three problems whose answers are 
TRUE and problems n + 1, n + 2, n + 3, n + 4, n + 5 contain three problems whose 
answers are TRUE.  Note that problems n + 1, n + 2, n + 3, n + 4 contain either 2 or 3 
problems whose answers are TRUE.  In the former case, the answers to both problem n 
and problem n + 5 are TRUE.  In the latter case, the answers to both problem n and 
problem n+ 5 are FALSE. In either case, problems n and n + 5 have the same answer.  

 
Using this fact, problems {1, 6, 11, 16, . . . , 91, 96} have the same answers. So do {2, 7, 
12, 17, . . . , 92, 97}, {3, 8, 13, 18, . . . , 93, 98}, {4, 9, 14, 19, . . . , 94, 99} and {5, 10, 15, 
20, . . . , 95, 100}.  For each of these five groups of problems, if we can determine the 
answer to one problem in the group, we can determine the answers to every problem in 
the group. Since the answer to problem 1 is FALSE, the answers to problems {1, 6, 11, 
16, . . . , 91, 96} are all FALSE.  Since problem 100 is FALSE, then the answers to 
problems {5, 10, 15, 20, . . . , 95, 100} are also FALSE.  Since problems 1 and 5 have 
answers FALSE, and exactly three of problems 1, 2, 3, 4, 5 have answer TRUE, 
problems 2, 3, 4 have answer TRUE.  Therefore, the answers to the remaining problems 
{2, 7, 12, 17, . . . , 92, 97}, {3, 8, 13, 18, . . . , 93, 98}, {4, 9, 14, 19, . . . , 94, 99} are all 
TRUE.  Having determined the correct answer to each question, Jaden achieves a 
perfect score by answering FALSE, TRUE, TRUE, TRUE, FALSE to the first five 
questions, and repeating this pattern for each block of five consecutive questions. 

 
  



5. Suppose quadrilateral STRV is an isosceles trapezoid, with ST = 5 cm, RV = 5 cm,  
TR = 2 cm, and SV = 8 cm.   

 
a. What is the the length of diagonal 

SR? 
 

b. For the isosceles trapezoid in part (a), 
what is the exact value of the cosine 
of ∠RTS? 

 
c. In triangle KLM below, points G and E 

are points on segment LM so that 
∠MKG ≅ ∠GKE ≅ ∠EKL.  Also, point 
F is located on segment KL so that 
segment GF is parallel to segment 
KM.  If quadrilateral KFEG is an 
isosceles trapezoid and the measure 
of ∠KLM is 84°, find the measure of 

∠MKG.  
 

 
Problem 5 Solution: 
 
a. Let TE be the altitude of the trapezoid, so 

that angle TES is a right triangle with 

hypotenuse ST = 5 and SE=
8−2 

2
 = 3. 

Therefore, the altitude is 4 (the sides of 
triangle TES form the Pythagorean triple 3-
4-5). 

 
 

Using the fact that the altitude of the trapezoid is 4, construct altitude SF from point S.  
From the right triangle SFR, where SF = 4, FR = FT + TR = 3 + 2 = 5, we find SR = 

√𝟏𝟔 +  𝟐𝟓  = √𝟒𝟏 units. 
 

 



 
b. Using triangle STR and the Law of 

Cosines, 41 = 4 + 25 − 20 cos ∠RTS.  
So,  
cos ∠RTS = −0.6.   
 
As an alternative approach, since FT = 
SE = 3, and ST=5, cos∠FTS = 3/5. 

Then cos ∠RTS = cos(180 − ∠FTS) = 
− cos ∠FTS = −3/5 = −0.6.   

 
 

c. Let m∠MKG = x.  Since segments KM and FG are parallel, quadrilateral KFEG is an 
isosceles trapezoid.  We have that m∠KML = m∠FGE = m∠FKE, so m∠LKM = 

3(m∠KML). Since the two angles sum up to 96 degrees, we have that m∠LKM = 72° = 
3x. Thus, x = 24°.  

 
As an alternative explanation, since quadrilateral KFEG is an isosceles trapezoid, due to 
symmetry, triangle KLG is an isosceles triangle. Then 2x + x + 84° = 180° and x = 24°  

 

  



6. If M is a natural number, then a “nice division” of M is a partition of the set {1, 2, … , M} 
into two disjoint, non-empty subsets A1 and A2 such that the sum of the numbers in A1 is 
equal to the product of the numbers in A2.  If M = 8, for instance, then A1 = {2, 4, 5, 6, 7} 
and A2 = {1, 3, 8} is a “nice division” of M. 
 
a. Find a “nice division” of M = 7. 
 
b.  Find a value of M such that there are two distinct “nice divisions” of M. 
 
c. A curious student claims that for every natural number M ≥ 5, there is a “nice 

division” of M.  Show or explain why the student is correct.   
 
Problem 6 Solution: 
 
a. Let S1 = {2, 4, 5, 7} and S2 = {1, 3, 6}. Note that 2 + 4 + 5 + 7 = (1)(3)(6) = 18. 
 
b. Consider taking S2 = {1, x, y} for some 1 < x < y ≤ M, and S1 the complement of S2 in {1, 

2, . . . , M}. This is a nice division if and only if the sum of the values in S1 equals the 
product of the values in S2.  So: 

 

M2+M

2
 − 1 − x – y = xy or 

M(M+1)

2
 = (x + 1)(y + 1) 

 
Similarly, let S2 = {x’, y’}.  Then, we have a nice division if and only if  
 

M2+M

2
 – x’ – y’ = x’y’ or 

M(M+1)

2
 + 1 = (x’ + 1)(y’ + 1) 

 
With M = 10, we have (x + 1)(y + 1) = 55 = 5 × 11 and (x’ + 1)(y’ + 1) = 56 = 7 × 8. Thus, 
(x, y) = (4, 10) and (x’, y’) = (6, 7), and we get two distinct nice divisions of 10: S1 = {2, 3, 
5, 6, 7, 8, 9}, S2 = {1, 4, 10}; and S1 = {1, 2, 3, 4, 5, 8, 9, 10}, S2 = {6, 7}.  

 
c. Use the process and equation from part (b) for arbitrary natural number M ≥ 5.  That is, 

find x and y values that satisfy the equation 
M(M+1)

2
 = (x + 1)(y + 1) 

 

If M ≥ 6 and is even, then let x = 
M−2

2
 and y = M.  These satisfy the equation and  

1 < x < y ≤ M, so that x and y are both elements in {1, 2, …., M}.  
 

If M ≥ 5 and is odd, then let x = 
M−1

2
 and y = M – 1.  These satisfy the equation and  

1 < x < y ≤ M, so that x and y are both elements in {1, 2, …., M}.  
 
Thus, all M ≥ 5 admit a nice division.   

 


